Calibration and Validation of Weather Sensors for Rotary-Wing UAS

BRIAN GREENE, PHILLIP CHILSON, JORGE SALAZAR-CERRENO, SIMON DUTHOIT, BILL DOYLE, BRENT WOLF, TONY SEGALES, CHRIS FIEBRICH, SEAN WAUGH, AND SHERMAN FREDERICKSON
Outline

1. Background and Motivation
2. Sensor Packages and Platforms
3. Calibration
 a. Temperature and Relative Humidity Responses
 b. Sensor Placement
 c. Wind Retrievals
4. Validation
5. Conclusions
Background and Motivation

• Boundary Layer processes poorly sampled in space and time
• Rotary wing unmanned aircraft can help close this gap
• Need to understand strengths and limitations of placing sensors on UAS
Sensor Package

InterMet Systems Temperature and Relative Humidity sensors integrated onto an Arduino Mega

Allows for on board synchronization resulting in optimized data stream to ground station
Coptersonde

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (ft)</td>
<td>2.25</td>
</tr>
<tr>
<td>Empty Weight (lbs)</td>
<td>12.7</td>
</tr>
<tr>
<td>Takeoff Weight (lbs)</td>
<td>12.7</td>
</tr>
<tr>
<td>Engine Type</td>
<td>Brushless electric</td>
</tr>
<tr>
<td>Engine Power</td>
<td>8 motors @ 500 W / motor</td>
</tr>
<tr>
<td>Battery Type</td>
<td>LiPo</td>
</tr>
<tr>
<td>Battery Capacity</td>
<td>22.2 V 6s 20,000 mAh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Cruise Speed (kts)</td>
<td>51</td>
</tr>
<tr>
<td>Min Cruise Speed (kts)</td>
<td>0</td>
</tr>
<tr>
<td>Max Range (nm)</td>
<td>6</td>
</tr>
<tr>
<td>Endurance (min)</td>
<td>25</td>
</tr>
<tr>
<td>Max Altitude (ft)</td>
<td>2500 for current mission</td>
</tr>
<tr>
<td>Min Altitude (ft)</td>
<td>0</td>
</tr>
<tr>
<td>Climb Rate (ft/min)</td>
<td>3,300</td>
</tr>
<tr>
<td>Descent Rate (ft/min)</td>
<td>1,500</td>
</tr>
<tr>
<td>Turn Rate (deg/sec)</td>
<td>180</td>
</tr>
</tbody>
</table>

The OU CopterSonde™ is an octo-rotor copter based on a hashtag frame design. The vehicle can be controlled manually or in autopilot mode. The on-board autopilot is the Pixhawk (PX4) running the APM Copter software. The inertial measurement unit (IMU) and GPS is built into the Pixhawk. Additionally, the system is equipped with differential GPS to improve accuracy of the positioning of the vehicle (2-8 cm) when in flight. The CopterSonde can maintain safe and stable flight even in the event of prop/motor failure. It is anticipated that the CopterSonde will be capable of operating in winds up to 50 knots.
Calibration – Mesonet Chamber

Bias vs. Temperature for iMet Sensors A-D

- iMet Sensor A
- iMet Sensor B
- iMet Sensor C
- iMet Sensor D

Bias (°C)
Temperature Range (°C)

- < -20°C
- -20°C to 0°C
- 0°C to 20°C
- 20°C to 40°C
- > 40°C
Calibration – NWC Mesonet Tower

National Weather Center Mesonet Tower

Aspirated and Non-Aspirated Chamber
NASA Simulation of Air Flow From a DJI Phantom 3

Airflow interactions are shown as undulating lines. Pressure changes are shown using color. Areas of high pressure are red; low are blue.
Calibration – Sensor Placement
Anechoic Chamber

- Propellers are at 25% throttle for entire experiment
- “Other temp sensor” refers to those provided by NSSL
- Sensor 1 placed alongside iMets
- Sensor 2 placed a few feet away from setup as control
- Random spikes of larger than several degrees are random communication errors from, not representative changes
- Can visually identify correlation between wind speed and temperature
- Sources of error potentially due to propellers mixing warmer air downward from the top of the chamber downward across the sensors since chamber not perfectly climate controlled
Anechoic Chamber

- Experiment #2: Sensors stationary with rotors off for 300 s, throttle increased to 25% afterward
- Noticeable difference in all sensors
- NSSL control increase likely due to mixing of warmer air downward
Wind Retrievals - Theory

\[R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(roll) & \sin(roll) \\ 0 & -\sin(roll) & \cos(roll) \end{bmatrix} \]

\[R_y = \begin{bmatrix} \cos(pitch) & 0 & -\sin(pitch) \\ 0 & 1 & 0 \\ \sin(pitch) & 0 & \cos(pitch) \end{bmatrix} \]

\[R_z = \begin{bmatrix} \cos(yaw) & -\sin(yaw) & 0 \\ \sin(yaw) & \cos(yaw) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[R = R_x \ast R_y \ast R_z = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix} \]

\[R_{ij} = \text{projection of } j \text{ in new coordinates onto } i \text{ in original coordinates} \]

\[\psi = \arccos(R_{33}) \]

\[\text{Direction} = \arctan\left(\frac{R_{23}}{R_{13}}\right) \]

\[V = C \cdot \tan(\psi) \]
Wind Retrievals - Experiment

10 M
9 M
Wind Retrievals - Results

\[V = 34.494 \sqrt{\tan(\psi)} - 6.337 \]
RMSE = 0.674 ms\(^{-1}\)

\[V = 16.208 \sqrt{\tan(\psi)} \]
RMSE = 0.809 ms\(^{-1}\)
Wind Direction Results

\[\text{Dir_true} = 0.996 \times \text{Dir_calc} - 12.772 \]

\[R = 0.999 \]

\[\text{RMSE} = 13.711 \text{ degrees} \]
Environmental Profiling and Initiation of Convection (EPIC)
EPIC First Trials – 10 May 2017

Copteronde-1 MRS 20170510-211528 UTC

Temperature and Dewpoint vs. Height

Wind Speed (kts) and Direction (deg)

The University of Oklahoma
School of Meteorology
Center for Autonomous Sensing and Sampling
Copteronde-2 MRSH 20170511-182843 UTC

Temperature and Dewpoint vs. Height

Wind Speed (kts) and Direction (deg)

Altitude AGL (m)

Temperature, Dewpoint Temperature (C)

THE UNIVERSITY OF OKLAHOMA
SCHOOL OF METEOROLOGY
ADVANCED RADAR RESEARCH CENTER

The University of Oklahoma
Center for Autonomous Sensing and Sampling
Conclusions and Future Work

It is imperative to properly aspirate sensors in order to collect meaningful data

◦ In general, best results when sensors placed underneath rotors close to tip

Wind derivations using Euler angles show encouraging results, leave lingering questions

◦ New technique also being explored involving control theory and explicit calculations of drag coefficients

Several meaningful case studies from EPIC

Will continue wind calibration with sonic anemometers to get higher resolution readings

CLOUD-MAP in June 2017 will develop and refine sampling techniques
Citations
