Optical Turbulence and Mean Meteorological Measurement Capabilities for Small UAS Penguin

Ryan Yamaguchi, Lee Suring, Qing Wang
Meteorology Department, Naval Postgraduate School, Monterey, CA

Kevin Jones
Department of Mech. and Aero. Engineering, Naval Postgraduate School
Monterey, CA

John Kalogiros
National Observatory of Athens, Athens, Greece

(Based on the thesis work of Lee Suring).
DoD Interest in Electro-Optical Systems
UAV, UAS, artillery and mortar defense capabilities
Navy’s XN-1 LAWS

THE U.S. NAVY’S LAWS

- Provide a visible warning shot
- Track moving targets for heat-seeking missiles
- Disable optical systems on enemy missiles and drones
- Burn up targets

- Radio frequency sensor
 - Provides range data
- Target-tracking sensor
- Beam director
- Rotating tracking mount

The lasers originate below deck
They are linked to the beam director with fiber-optic cables

Cheaper to operate
The LaWS is a cheaper way to take down small drones than a comparable SM-2 missile. The price difference:

- $1 LASER SHOT
- $400,000 SM-2 MISSILE

Electro-Optical Hurdles

- Electro-optical (EO) wavelengths are affected by small-scale variabilities in atmospheric refractivity.
- Atmospheric boundary layers have significant turbulence and refractivity gradients which cause scintillation (defocus).
- Aerosols in the atmosphere also result in scattering and absorption, and hence attenuations of laser beams.
Background

- Refraction of light
- Meteorological measurements can be used to characterize optical propagation conditions
- Data collection needs to be at a significantly high sampling rate in order to capture the small scale eddies affecting optical propagation

\[
\frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1} = \frac{n_1}{n_2}
\]

\[
n = 1 + 10^{-6} \left\{ m_1(\lambda) \frac{P}{T} + [m_2(\lambda) - m_1(\lambda)] \frac{qP}{T \varepsilon \gamma} \right\}
\]
Background

- Optical propagation is most significantly affected by turbulence eddies in the inertial subrange.
- To resolve the small scale eddies in the inertial subrange, high-rate sampling of relevant variables is needed.
- Turbulence structure parameter, C_n^2, is used in optical propagation models to describe the magnitude of atmospheric scintillation.
- Temperature perturbations affect scintillation the most.

\[
\langle [T'(x) - T'(x + r)]^2 \rangle = C_T^2 r^{-2/3}
\]

\[
C_n^2 = B_1 C_T^2 + B_2 C_{Tq} + B_3 C_q^2
\]
Background

- Scintillation can distort beam and degrade “power in bucket” at the target

10.6-µm laser beam @ 7300m 3m above the ground

(a) Zero turbulence
(b) Uniform turbulence of $C_n^2 = 10^{-14} \text{ m}^{2/3}$

(Don Walters 2000, NPS)
Research Objectives

• Increase data for model evaluation/improvement
• Collect data above the levels of surface towers
• Collect data to account for strong spatial and temporal variations in environmental propagation
• Test the feasibility of small and low-cost meteorological sUAS platforms for supporting operations of directed energy weapons
NPS Penguin sUAS

- Airframe: Finwing Penguin developed for FPV flying
 - Large payload bay
 - Push propeller
 - Modified engine and payload bay
- Instruments onboard
 - iMet radiosonde package modified to self-record basic meteorological parameters (GPS, temperature, pressure, and humidity)
 - iMet-XQ mean meteorological sensor package specifically designed for fixed wing UAVs
 - Pitot tube
 - Pixhawk (GPS & Autopilot)
 - Fine-wire thermocouple for temperature perturbations
 - Platinum temperature sensor for reference temperature
Sensor Package Ground Evaluation

Truck-bed testing, Marina Airport

1. Clean air Thermocouple 10Hz sensor (.001”)
2. Sonic Anemometer
3. Airframe Thermocouple 10Hz sensor (.001”)
4. Airframe Pt100 RTD (.02”) Platinum temperature sensor (mean temperature)
5. Pitot Static Tube
6. Pixhawk
 - Mean wind speed (pitot static tube)
 - Wind direction
 - GPS coordinates

- Instrumented NPS Penguin vs sonic anemometer + gas analyzer + thermocouple and standard data acquisition system
- Data collection at variable backward driving speed
Camp Roberts (McMillan Air Field) Flight Testing

- Test 1: Nov 16, 2017
- **Test 2: March 26, 2018**
- Instrumented NPS Penguin
- Ground-based tower and tripod
- Side-by-side sampling
Example Results
Marina CIRPAS Runway Testing
Sample Flight Run from 26 March, 2018 testing at McMillian Airfield
Flight leg variability
Variability of Mean Meteorological Conditions
Mean Temperature Profile from sUAS
Mean Humidity Profile from sUAS
High-rate temperature measurement
Spatial Variability of Temperature
Summary and Conclusions

- Team conducted successful instrumentation and testing of NPS sUAS Penguin to support high energy laser weapon deployment.
- A low-cost, light weight, and low power consumption thermocouple was integrated onto the Penguin alongside mean meteorological sensors.
- Test flights at Camp Robert resulted in reasonable near surface mean and CN2 profiles.
Lessons Learned

- Longer level legs are needed to improve turbulence statistics
- Need to fine tune waypoint settings to ensure level flight legs at constant flight altitude
- Higher sampling rate temperature sensors are desired to reveal more details of optical turbulence
Future Research

• More test flights in different meteorological conditions
• Flight in coastal and marine environment
• Use of higher rate fine wire temperature probes to sample down to millimeter eddies
• Explore 3-D turbulence measurements from the Penguin
• Quadrotor flights
• Autonomous and ship launching and landing
Research Sponsors:

ONR/NPS Consortium for Robotics and Unmanned Systems Education and Research (CRUSER)

NPS Naval Research Program (NRP)

Thank you!