Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS): An update on ongoing flight activities in Alaska

Gijs de Boer1,2, Dale Lawrence1, Darielle Dexheimer3, Fan Mei4, Sergey Matrosov1,2, Jessie Creamean1,2, Hagen Telg1,2, Matthew Shupe1,2, Carl Schmitt5, Al Bendure3, John Hubbe4, Mark Ivey3, Beat Schmid4, Ian Brooks6
Introduction to ICARUS

Table 1. An overview of flight campaigns for COALA, ERASMUS, and ICARUS. Colors match those used in the map in Fig. 1.

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Dates</th>
<th>Operator</th>
<th>Platforms</th>
<th>No. of flights (UAS/TBS)</th>
<th>No. of flight hours (UAS/TBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COALA</td>
<td>6–20 Oct 2014</td>
<td>CU, DOE ARM</td>
<td>DH1, TBS</td>
<td>29/3</td>
<td>6.5/3</td>
</tr>
<tr>
<td>ERASMUS</td>
<td>2–16 Aug 2015</td>
<td>CU</td>
<td>DH2</td>
<td>206/0</td>
<td>41/0</td>
</tr>
<tr>
<td></td>
<td>2–16 Apr 2016</td>
<td>CU</td>
<td>DH2, Pilatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9–22 Oct 2016</td>
<td>CU</td>
<td>DH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICARUS</td>
<td>22–28 Oct 2015</td>
<td>DOE ARM</td>
<td>TBS</td>
<td>130/55</td>
<td>77.8/198</td>
</tr>
<tr>
<td></td>
<td>3–20 Apr 2016</td>
<td>DOE ARM</td>
<td>TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5–11 Jun 2016</td>
<td>DOE ARM</td>
<td>DH2, TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 Jun–27 Jul 2016</td>
<td>DOE ARM</td>
<td>DH2, TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25–26 Sep 2016</td>
<td>DOE ARM</td>
<td>TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9–22 Oct 2016</td>
<td>DOE ARM</td>
<td>TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15–17 Nov 2016</td>
<td>DOE ARM</td>
<td>TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2–9 Apr 2017</td>
<td>DOE ARM</td>
<td>TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14–28 May 2017</td>
<td>DOE ARM</td>
<td>DH2, TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1–15 Aug 2017</td>
<td>DOE ARM</td>
<td>DH2, TBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12–24 Oct 2017</td>
<td>DOE ARM</td>
<td>TBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Platforms and Instruments
Scientific Targets

Radiative Cooling
- Drives buoyant production of turbulence
- Forces direct condensation within inversion layer
- Requires minimum amount of cloud liquid water

Microphysics
- Liquid forms in updrafts and sometimes within the inversion layer
- Ice nucleates in cloud
- Rapid ice growth promotes sedimentation from cloud

Dynamics
- Cloud-forced turbulent mixed layer with strong narrow downdrafts, weak broad updrafts, and q_{tot} and θ_E nearly constant with height
- Small-scale, weak turbulence in cloudy inversion layer
- Large-scale advection of water vapour important

Surface Layer
- Turbulence and q contributions can be weak or strong
- Sink of atmospheric moisture due to ice precipitation
- Surface type (ocean, ice, land) influences interaction with cloud
Science Topics: Thermodynamic State
Science Topics: Stable Boundary Layers

(Sullivan et al., 2016)
Science Topics: Turbulence Intensity

\[TI = \frac{\sigma_U}{U} \]

Theoretical (LES)

ISARRA 2018, 9-12 July, 2018, Boulder, CO USA
Science Topics: Surface Fluxes
Science Topics: Aerosol-Cloud Interactions

Condensation Particle Counter (CPC; 0.01 – 1.0 µm)
Printed Optical Particle Spectrometer (POPS; 0.15 – 3 µm)

ISARRA 2018, 9-12 July, 2018, Boulder, CO USA
Community Resource
Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE):

Stratified Ocean Dynamics of the Arctic (SODA):

Looking Ahead
Summary and Acknowledgments

Summary:
- UAS have been deployed to northern Alaska (Oliktok Point) to provide new perspectives to help us answer fundamental questions about the physics of the Arctic atmosphere.
- The ARM Climate Research Facility has developed an operational UAS observing capability through a variety of campaigns, including the combined engineering and research campaign ICARUS.
- Over a series of deployments, measurements were obtained of lower atmospheric thermodynamic state, turbulence, turbulent fluxes, aerosols and precipitation.
- These measurements are now beginning to be used to evaluate model physics across several numerical models.
- The ARM UAS capability can now be requested for scientific deployment by the community through a proposal process.

Acknowledgments:

References: