Measuring carbon dioxide mole fractions in the atmosphere with RPAS

Martin Kunz1, Jošt V. Lavrič1, Wieland Jeschag1,2, Maksym Bryzgalov3, Bertil Hök4, Burkhard Wrenger5, Pieter Tans6 and Martin Heimann1

1 Max Planck Institute for Biogeochemistry, Jena, Germany
2 University of Applied Sciences, Jena, Germany
3 SenseAir AB, Delsbo, Sweden
4 Hök Instruments AB, Västerås, Sweden
5 Ostwestfalen-Lippe University of Applied Sciences, Höxter, Germany
6 NOAA ESRL, Boulder, USA
Idea

- Paris Agreement: net anthropogenic greenhouse gas emissions to 0 by second half of 21st century
- Better tools needed to study greenhouse gas sources and sinks and improve transport modelling
- Remotely piloted aerial systems are cheap, easy to operate and flexible platforms for micro scale (<1 km) studies
- Need for small and accurate sensors (e.g. better than 5 ppm CO₂)
COCAP

- **Compact** carbon dioxide analyser for **airborne** platforms

- Main components: CO₂ sensor, data logger, pump/flow controller

- Other measured quantities: Ambient temperature, relative humidity and pressure

- 42x14x14 cm³, 1 kg, 8 W

- Price <10.000 €
CO2 sensor prototype based on an ethanol sensor by SenseAir AB

- Non-dispersive infrared (NDIR) sensor
- Cell volume: 50 cm³
NDIR principle

- Detector measures light intensity, which is influenced by absorption in the cell.
- Number of molecules in cell depends on T and p.
- Properties of filter, source and detector temperature-dependent.
Correcting the sensor output

- NDIR inherently non-linear
- Temperature and pressure correction depend on CO$_2$ concentration
- Tests in environmental chamber to establish correction formula
- Empirical model fitted to calibration data
Correcting the sensor output

![Graph showing CO₂ in µmol/mol, p in kPa, T in °C, and Signal in a.u. over time in h.]

Reference COCAP
Results of the correction have not always been so good...
New thermal management

Ambient air: 0 to 30 °C

EPP (Plastic Foam) Housing

Air inside Housing: 50 °C

Divider

LPL Sensor

Heater: >50 °C

Fan

Component block: 55.0 °C

Temperature Sensor for Fan

Heater Control: 50.00 °C

Max Planck Institute for Biogeochemistry

Martin Kunz

Measuring carbon dioxide mole fractions in the atmosphere with RPAS
Performance of controller

Air temperature in °C

ΔT in mK

Time in minutes

Martin Kunz
Measuring carbon dioxide mole fractions in the atmosphere with RPAS
Lannemezan

Max Planck Institute for Biogeochemistry

Martin Kunz
Measuring carbon dioxide mole fractions in the atmosphere with RPAS
Preliminary results

Sunrise: 5:34 UTC

Altitude above ground level in m

CO₂ dry air mole fraction in ppm

06:03 UTC

Martin Kunz
Measuring carbon dioxide mole fractions in the atmosphere with RPAS
Preliminary results

Sunrise: 5:34 UTC
Preliminary results

Sunrise: 5:34 UTC

Martin Kunz
Measuring carbon dioxide mole fractions in the atmosphere with RPAS
Preliminary results

Sunrise: 5:34 UTC

Temperature in °C

Temperature in °C

Altitude above ground level in m

06:03 UTC
Preliminary results

Sunrise: 5:34 UTC

Altitude above ground level in m

Temperature in °C

06:03 UTC
06:34 UTC

Max Planck Institute for Biogeochemistry

Martin Kunz
Measuring carbon dioxide mole fractions in the atmosphere with RPAS
Preliminary results

Sunrise: 5:34 UTC

Altitude above ground level in m

Temperature in °C

0 10 11 12 13 14

0 50 100 150 200 250 300 350

06:03 UTC
06:34 UTC
08:17 UTC

Martin Kunz
Measuring carbon dioxide mole fractions in the atmosphere with RPAS
Next steps

- Analyse data from Lannemezan, compare to tower measurements
- Technical publication on COCAP
- New campaign in late summer:
 - Take series of profiles in the nocturnal boundary layer
 - Calculate CO\textsubscript{2} flux with a budget method
Thank you for your attention!