
Stephan T. Kral1, Joachim Reuder1, Stephanie Mayer2, Marius O. Jonassen3,1, Timo Vihma4,3, Jens Bange5, Burkhard Wrenger6, Siegfried Raasch7, Björn Maronga7, Zbigniev Sorbjan8, Line Båserud1, Omar El Guernaoui1, Anak Bhandari1

1Geophysical Institute, University of Bergen; 2Uni Research AS, Bergen; 3The University Centre in Svalbard, Longyearbyen; 4Finnish Meteorological Institute, Helsinki; 5University of Tübingen; 6University of Applied Sciences Ostwestfalen-Lippe, Höxter; 7Leibniz University Hannover; 8Marquette University, Milwaukee
Overview

• About the Project
• Background
• Methods
• Work packages
 – Development and Validation
 – Observations over homogeneous surface
 – Observations over heterogeneous surface
 – Numerical modelling experiments
• Summary
ISOBAR (Innovative Strategies for Observations in the arctic atmospheric Boundary lAyeR)

Funded by the Norwegian Research Council + In Kind

Project Partners:
Geophysical Institute, University of Bergen
Uni Research AS, Bergen
The University Centre in Svalbard, Longyearbyen
Finnish Meteorological Institute, Helsinki
University of Tübingen
University of Applied Sciences Ostwestfalen-Lippe
Leibniz University Hannover
Marquette University, Milwaukee
Purpose

• ABL processes in the Arctic
• Turbulence within the Stable ABL

Goal

• ABL Parameterization Schemes

Approach

• Observations targeting all relevant processes
 – AWS
 – Profiling systems (RPAS, balloon, remote sensing)
 – Turbulence systems (RPAS, ground based)
• Numerical Modelling
Characteristics of the Stable ABL

- Weak SW fluxes
- Weak turbulent fluxes
- Strong gradients
- Inversions
- Intermittent turbulence
- Very shallow ABL height
- Gravity waves
- Low Level Jets (LLJ)
- Internal boundary layers (surface heterogeneities)
Problems with Stable ABL in numerical Models

- Poor vertical resolution for shallow ABL
- Warm temperature bias in NWP and climate models
- Overestimation turbulent mixing rates
- Overestimation of the ABL height
- Insufficient surface layer scaling
- Room for improvements in ABL parameterization schemes
Methods

• Measurement strategy
 – ground based flux and met stations
 – ABL remote sensing and profiling systems
 – RPAS

• Numerical modeling experiments
 – Single Column Model (SCM)
 – Large-Eddy Simulation (LES)
 – Weather Research and Forecasting Model (WRF)
Work packages

• WP1: Development and proof of concept
• WP2: Observations over homogeneous ice surface
• WP3: Observations over strong surface heterogeneities
• WP4: Numerical modelling experiments
WP1: Development and proof of concept

• Characterization of the fixed wing turbulence systems
• Characterization of the Quadcopter turbulence system
• Validation Campaign:
 – Andøya Rocket Range, Norway
 – (Lindenberg Observatory (DWD), Germany)
 – (Lannemezan)
 – Winter 2016/17
 – EC tower
 – Remote sensing and profiling systems
• Optimize measurement strategies
WP2: Observations on the Arctic SBL over homogeneous ice surface

- Planned for winter/spring 2017
- Ship based measurement campaign
- Measurements:
 - 10m-mast with several EC systems
 - Profiling systems (tethersonde, remote sensing)
 - RPAS systems
 - High resolution ABL profiles: Bebop2
 - Tropospheric profiles: SUMO
 - Area averaged flux measurements: SUMO, MASC, MiniTalon
 - Fixed position flux measurements: large Quadcopter
WP2: Observations on the Arctic SBL over homogeneous ice surface

• Unsolved challenges:
 – Campaigns to join:
 • Svalbard fjord
 • UNIS cruise
 • Northern Scandinavia, e.g. Sodankylä (FMI), Bothnian Bay
 • Antarctic austral winter cruise
 • MOSAiC Project (anticipated for 2019-20)
 – Permissions
 – Logistics
WP3: Observations on the Arctic SBL over strong surface heterogeneities

- Planned for winter/spring 2018
- Around Svalbard
- Measurements:
 - 10m-mast
 - Profiling systems
 - RPAS systems
 - Profiles and turbulence measurements on both sides of the internal boundary
 - Flights across the internal boundary
WP4: High-resolution numerical model experiments

- Single Column Model
 - Develop improved stability functions based on WP2
 - Compare model results to experiments
- LES (PALM)
 - Idealized simulations of Arctic ABL, initialized with observations
 - Virtual RPAS measurements compare to observations
- WRF
 - Idealized simulations
 - Implementation of improved stability functions in parametrization schemes
 - Comparison of measurements to simulations based on different parameterization schemes
Summary

- Study the Polar Boundary Layers
 - Implement RPAS based turbulence systems
 - Measurement strategies combining RPAS with ground based and ABL remote sensing systems
 - Validation campaign
 - Campaign over homogeneous surface
 - Campaign over heterogeneous surface
 - Numerical Modeling experiments

Improved parametrization schemes for the stably stratified ABL