Observations on the Arctic Boundary Layer using the Small Unmanned Meteorological Observer (SUMO) during polar night

Introduction

• **Where:**
 – Svalbard

• **How:**
 – During a graduate course at the University Centre in Svalbard
 – AGF-350/850 *The Arctic Atmospheric Boundary Layer and Climate Processes*
 – 19 international students

• **When:**
 – 8-15 February 2016
Introduction

• Why:
 – Study processes typical for the Polar Atmospheric Boundary Layer
 • Cold pools
 • Katabatic winds
 • Air-sea interactions
 • Cold-air outbreaks
Study Location: Svalbard
Sun returns to Longyearbyen 08.03.2016

Sun above the horizon 16.02.2016
Automatic Weather Stations
with Surface energy balance
Temperature sensors
Tethersonde + SODAR
Automatic Weather Stations
with Surface energy balance
Temperature sensors
Tethersonde + SODAR

Boat
Snowmobiles
RPAS
SUMO

Small Unmanned Meteorological Observer

Airframe

“Multiplex FunJet”
- Weight ~800 g
- Wing span 0.8 m
- Battery powered
- Autopilot: Paparazzi

- **Performance:**
 - Ground speed ~15 m/s
 - Endurance ~45 min
 - Range ~35 km
 - Max altitude ~5 km
- “slow” temperature
- “slow” humidity
- pressure
- wind speed
- wind direction
- surface temperature
SUMO
Sensors/Measurements

- “slow” temperature
- “slow” humidity
- pressure
- wind speed
- wind direction
- surface temperature

- \(u' \ v' \ w' \ & T' \)
- Sensible heat flux
- Momentum flux
SUMO
Lighting
Case, 13 February 2016
“cold-air outbreak”
Case, 13 February 2016
“cold-air outbreak”
Case, 13 February 2016
“cold-air outbreak”
Case, 13 February 2016
“cold air outbreak”
Case, 13 February 2016
“cold air outbreak”
Case, 13 February 2016
“cold-air outbreak”
Measurement strategy

- Boat
- Snowmobiles
- RPAS
- Tethersonde
Case, 13 February 2016
“cold-air outbreak”
Measurement strategy
Case, 13 February 2016
“cold-air outbreak”
logistics
Case, 13 February 2016
“cold-air outbreak”

Logistics

RPAS ground base:
BV206 snowcat
Case, 13 February 2016
“cold-air outbreak”

Logistics

RPAS ground base:
BV206 snowcat
Case, 13 February 2016
“cold-air outbreak”

Measurement strategy

![Graph showing measurement strategy for Tethersonde, SUMO, BOAT, and SST on 13 Feb 2016.](image)
Results

temperature and humidity measurements + flux estimates

boat

Courtesy of Haualand et al. 2016
Results

temperature and humidity measurements
+
flux estimates
boat

Courtesy of Hualand et al. 2016
Results

temperature and humidity measurements

+ *flux estimates*

boat

Courtesy of Haualand et al. 2016
Results

Temperature profiles

RPAS

Boundary layer height *does* increase with distance from the shore

BUT there is no sign of an unstable layer close to the surface

Courtesy of Hualand et al. 2016
Results

Temperature profiles

RPAS

Boundary layer height *does* increase with distance from the shore

BUT there is no sign of an unstable layer close to the surface

Courtesy of Hualand et al. 2016
Results

Temperature profiles

RPAS

Boundary layer height does increase with distance from the shore

BUT there is no sign of an unstable layer close to the surface
Results

Temperature profiles

RPAS
Results

Numerical model

Figure 8: Potential temperature profiles of four different grid points of the AROME-Arctic model above (a) Isfjorden, (b) Adventfjorden, (c) Adventdalen, (d) Adventdalen up-valley. The colours indicate the forecast time in UTC.

Courtesy of Haukland et al. 2016
Results

Numerical model

Figure 9: (a) Map showing cross-section used in (b). (b) Vertical cross-section of potential temperature from the AROME-Arctic at 18:00 UTC.

Courtesy of Hualand et al. 2016
Results

Numerical model

Figure 9: (a) Map showing cross-section used in (b). (b) Vertical cross-section of potential temperature from the AROME-Arctic at 18:00 UTC.

Courtesy of Hualand et al. 2016
Polar environment

challenges

• High relative humidity:
 – Temperature sensor problem (PT1000)
Polar environment challenges

• High relative humidity:
Polar environment

challenges

• High relative humidity:
Polar environment

challenges

• High relative humidity:
 – Temperature sensor problem
 – Aircraft icing
Polar environment challenges

• Legal issues
 – RPAS operator license from the Norwegian CAA
 – Permission from the Norwegian CAA
 – Permission from the Governor of Svalbard (Sysselmannen)
 – Permission from the Norwegian National Security Authority (NSM)
 – Permission from the local airport:
 • Two-way mobile phone communication
 – A NOTAM was issued
 – Beyond Line of Sight permission within Longyear TIA/TIZ
Future work

• Calculate fluxes using the SUMO profiles
 – *Line Båserud*

• Compare SUMO profiles to the SODAR and tethersonde profiles

• Involve the students more in the operations
 – Separate display with live data and map
Case, 13 February 2016

“cold-air outbreak”

Measurement strategy

- Boat
- Snowmobiles
- RPAS