Meteorological Data in the Open Glider Network (OGN)

A.Z. Gyongyosi

National University of Public Service
MOTIVATION

- **Demand on Aviation Meteorology**
 - GA, UAV ops require next generation avi.met

- **NWP trends**
 - $dx \to \sim 1\text{km}$, adequate params (mp, ism, sfc, pbl, cu)
 - Community models (with proper setup and DA)
 - Software container technology
 - suitable data from the PBL is required

- **UAS trends**
 - sUAVs: feasible platform
 - Big Data PBL characteristics

- **Data flow**
 - Special sensors
 - equipments
 - infrastructure for
 - data transmission
 - data processing

- **Utilize meteor obs as a “side effect”**
 - Most gliders: FLARM use OGN for tracking
• **WRF v3.9.1**
 - 9-3-1km resolution nests
 - Increased vertical resolution near surface (dz1=4m)
 - Physics setup selected from 30 setups testing at 20 different “interesting” situations
 - CORINE landuse database
 - DKSIS soil database
 - Modified (MARTHA, HUNSODA) soil hydraulic data tables

- Input: 0.25deg GFS, 4 times a day + local (SFC, sodar, TWR) meas.
- 3DVAR data assimilation
 - ready for the reception of UAV profile measurements
Model output

of model output meteorological product in support of aviation: icing characteristics.
Further examples:
- Visibility
- Low ceiling
- Turbulence
- Severe convection (CB, TS, SQ…)
- Wind, wave, thermal data (bal, gld)
UAS instrumentation

- Standard GRAW radiosonde
 - DFM-09 rawinsonde and GND receiver
- Sparvio UAV sensors from Windsond
 - SKH1 (Hub+logger+P+ext.GPS)
 - SKS2 (T+Rh@10Hz)
 - SKC1/RR1 (radio)
- OGN_Met-racker
 - BME280 PTH
 - SD log
 - Console output
GND receivers

rPi+SDR – OGN
RR1 – Sparvio
GS-U – GRAW
Simple Wind measurement

Ground Speed and Flight Path

Orange: cruising against wind
Blue: drifting with wind
Yields WS & WD
Red: exponential acceleration
Green: constant drifting (+turb)
Open Glider Network (OGN)

Built on FLARM anti-collision system
Utilizing as a tracking solution as a side-effect
Met. Data in the OGN

Built on OGN Tracking system (existing network with wide coverage)
Utilizing as a meteorological data relay solution as a side-effect
Continuously increasing receivers network
Coverage – HUN
GND receiver antenna
SBC (rPi)
Software radio (SDR)
The OGN_Met-Tracker

- BME280: PTH
- Console SD log
- Mobile OGN receiver

- weight <40g
- P ~mA
- Range >100km
- Cost <100EUR
Közelmúltban kutatócsoportunk - a lengyel core fejelesztő csapattal együttműködésben - megvalósította a meteor adatok lesugárzását, és a földi vevő hálózatba (APRS szervereken keresztül) történő implementálását.
OGN+SparvIO+GRAW
IoT solutions

- **LoRa, etc. based IoT device development (independent of OGN)**
 - Special met drones equipped by special atmospheric sensors and flying regular or targeted patterns from a network of drone stations in order to collect environmental data as input for environmental models (soil moisture, air quality characteristics, turbulence and lightning detection, visibility sensors, microphysics characteristics, etc);

- **4-5G solutions for data transmission**
 - Drones and GA airframes provide data as an input for NWP modeling being run as a driver of avi.met support systems – similar organic behaviour to the traffic information of navigation/mapping apps (e.g.: waze, gmaps, etc.).
Nodes

HPE Edgeline EL300 and EL1000 nodes serving as IoT Gateway for local preprocessing and NWP integration (4DVAR)

Local nodes serving as local meteorological/drone control hubs and data servers (data communication to airframes serving wx/as/etc info for trajectory optimization.)
The (near) future

- LoRa, etc. based IoT device development (independent of OGN);

- 4-5G solutions for data transmission;

- HPE Edgeline EL300 and EL1000 nodes serving as IoT Gateway for local preprocessing and NWP integration (4DVAR)

- Drones will NOT substitute weather balloons at high altitudes and marginal weather (icing, heavy precip., storm, severe WS, SQ, etc...)
Thank you for your attention!

A.Z. Gyongyosi, I. Makkay, S. Takacs, D.F. Vranics and Zs. Bottyan

zeno@nimbus.elte.hu
http://uavmet.szrf.hu