Targeted Observations by Radars and UAS of Supercells (TORUS): Overview of 2019 Field Phase

Adam Houston, University of Nebraska – Lincoln
Acknowledgements

Brian Argrow, University of Colorado
Mike Coniglio, NSSL
Eric Frew, University of Colorado
Erik Rasmussen, CIMMS
Chris Weiss, Texas Tech University
Conrad Ziegler, NSSL
Acknowledgements

Sean Waugh, NSSL
Steve Borenstein, University of Colorado
Sam Urato, NOAA AOC
Keli Pirtle, NSSL
Amanda Summars, CIMMS
Acknowledgements
Knowledge Gaps and Forecasting Challenges

Severe thunderstorm warnings:
- Probability of detection (POD) “high” and unchanged
- False alarm rate (FAR) “low” and unchanged

Tornado warnings:
- POD “low” and decreasing
- FAR “high” and largely unchanged

NOAA (2018)
The aim of TORUS is to close fundamental knowledge gaps by explicating the relationship of storm-generated boundaries and coherent (O[1,000 s]) structures within supercell thunderstorm outflow to the generation/amplification of near-surface rotation.
Knowledge Gaps and Forecasting Challenges

Supplemental video from Orf et al. (2017)
Experiment Design Objective

Coordinated and tightly-focused deployments of new and established remote and in situ instruments tasked to collect thermodynamic and kinematic observations both aloft and at the surface.
Instruments

- 16 platforms
- 22 vehicles
- ~60 people
Instruments

RAAVEN

- 91" wing span
- BST multi-hole probe for 3D wind
- Vaisala RSS-421 (temperature, humidity)
- iMet EE03 (pressure, temperature, humidity)
- VectorNav VN-200 IMU+GPS
- Pixhawk Cube autopilot (custom designed carrier board)
Roof-mounted, pneumatic catapult
Instruments

- Texas Tech Ka-band Radars
- NOAA P3
- Mobile LIDAR
- NOXP
- Windsonde System
- Combined Mesonet and Tracker
- Mobile Sounding System
- NSSL Mobile Mesonets

[Images showing the listed instruments]
Mission Areas
<table>
<thead>
<tr>
<th></th>
<th>VORTEX2</th>
<th>TORUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>>400’ COAs</td>
<td>~35,000 km²</td>
<td>~951,000 km²</td>
</tr>
<tr>
<td>Simultaneous operation of</td>
<td>Prohibited</td>
<td>Allowed</td>
</tr>
<tr>
<td>multiple UAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTAM issuance</td>
<td>2 hour lead</td>
<td>1 hour lead</td>
</tr>
<tr>
<td>Flight ceiling</td>
<td>1000’</td>
<td>2500’ (5000’ in some areas)</td>
</tr>
<tr>
<td>Ground station mobility during</td>
<td>Prohibited</td>
<td>Allowed</td>
</tr>
<tr>
<td>flights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight times</td>
<td>~45 min</td>
<td>>150 min</td>
</tr>
</tbody>
</table>
2019 Deployments

- Coordinated obs on 17 supercells
- 7 tornadic supercells targeted
- 2 preconvective missions
- 14 total deployment days
- 51 UAS missions flown on 15 supercells
- 40.85 flight hours
2019 Deployments

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Supercell</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/17</td>
<td>Southwest NE</td>
<td>Yes</td>
</tr>
<tr>
<td>5/18</td>
<td>Northern OK</td>
<td>No</td>
</tr>
<tr>
<td>5/20</td>
<td>Southwest OK/Northwest TX</td>
<td>Yes</td>
</tr>
<tr>
<td>5/22</td>
<td>Central OK</td>
<td>N/A</td>
</tr>
<tr>
<td>5/23</td>
<td>Northeast TX Panhandle</td>
<td>Yes</td>
</tr>
<tr>
<td>5/24</td>
<td>Northwest TX</td>
<td>Yes</td>
</tr>
<tr>
<td>5/25</td>
<td>Central TX Panhandle</td>
<td>Yes</td>
</tr>
<tr>
<td>5/26</td>
<td>Southeast CO</td>
<td>Yes</td>
</tr>
<tr>
<td>5/27</td>
<td>Northeast CO/Southwest NE</td>
<td>Yes</td>
</tr>
<tr>
<td>5/28</td>
<td>Northern KS</td>
<td>Yes</td>
</tr>
<tr>
<td>6/2</td>
<td>OK Panhandle</td>
<td>No</td>
</tr>
<tr>
<td>6/8</td>
<td>Northwest KS</td>
<td>Yes</td>
</tr>
<tr>
<td>6/11</td>
<td>Southwest KS</td>
<td>Yes</td>
</tr>
<tr>
<td>6/13</td>
<td>OK Panhandle</td>
<td>No</td>
</tr>
<tr>
<td>6/14</td>
<td>OK Panhandle</td>
<td>N/A</td>
</tr>
<tr>
<td>6/15</td>
<td>Western TX Panhandle</td>
<td>Yes*</td>
</tr>
</tbody>
</table>
Questions?

https://torus.unl.edu/

@torusexperiment
@torusupercell

TORUS Experiment